Decomposability of abstract and path-induced convexities in hypergraphs
نویسندگان
چکیده
An abstract convexity space on a connected hypergraph H with vertex set V (H) is a family C of subsets of V (H) (to be called the convex sets of H) such that: (i) C contains the empty set and V (H), (ii) C is closed under intersection, and (iii) every set in C is connected in H. A convex set X of H is a minimal vertex convex separator of H if there exist two vertices of H that are separated by X and are not separated by any convex set that is a proper subset of X. A nonempty subset X of V (H) is a cluster of H if in H every two vertices in X are not separated by any convex set. The cluster hypergraph of H is the hypergraph with vertex set V (H) whose edges are the maximal clusters of H. A convexity space on H is called decomposable if it satisfies the following three properties: (C1) the cluster hypergraph of H is acyclic, (C2) every edge of the cluster hypergraph of H is convex, (C3) for every nonempty proper subset X of V (H), a vertex v does not belong to the convex hull of X if and only if v is separated from X in H by a convex cluster. It is known that the monophonic convexity (i.e., the convexity induced by the set of chordless paths) on a connected hypergraph is decomposable. In this paper we first provide two characterizations of decomposable convexities and then, after introducing the notion of a hereditary path family in a connected hypergraph H, we show that the convexity space on H induced 494 F.M. Malvestuto and M. Moscarini by any hereditary path family containing all chordless paths (such as the families of simple paths and of all paths) is decomposable.
منابع مشابه
Vertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملA general framework for path convexities
In this work we deal with the so-called path convexities, defined over special collections of paths. For example, the collection of the shortest paths in a graph is associated with the well-known geodesic convexity, while the collection of the induced paths is associated with the monophonic convexity ; and there are many other examples. Besides reviewing the path convexities in the literature, ...
متن کاملCanonical and monophonic convexities in hypergraphs
Known properties of ‘‘canonical connections’’ from database theory and of ‘‘closed sets’’ from statistics implicitly define a hypergraph convexity, here called canonical convexity (cconvexity), and provide an efficient algorithm to compute c-convex hulls. We characterize the class of hypergraphs in which c-convexity enjoys the Minkowski–Krein–Milman property. Moreover, we compare c-convexity wi...
متن کاملConvexities related to path properties on graphs
A feasible family of paths in a connected graphG is a family that contains at least one path between any pair of vertices in G. Any feasible path family defines a convexity on G. Well-known instances are: the geodesics, the induced paths, and all paths. We propose a more general approach for such ‘path properties’. We survey a number of results from this perspective, and present a number of new...
متن کاملConvexities Related to Path Properties on Graphs; a Unified Approach
Path properties, such as ’geodesic’, ’induced’, ’all paths’ define a convexity on a connected graph. The general notion of path property, introduced in this paper, gives rise to a comprehensive survey of results obtained by different authors for a variety of path properties, together with a number of new results. We pay special attention to convexities defined by path properties on graph produc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 35 شماره
صفحات -
تاریخ انتشار 2015